1. 华体会注册

          你現在的位置:首頁->新聞中心->學術看板

          物理學院理論物理中心學術報告

          來源:本站 作者: 發佈時間:2021-06-04

           

          From local thermometry to general quantum multi-parameter global sensing

          報告人: Dr. Victor Montenegro(電子科技大學基礎與前沿研究院)

          報告時間:202164日週五 10:00-1130

          報告地點:物理館323報告廳

          報告摘要:Measuring the effective temperature of the oscillator is perhaps one of the most relevant steps in the characterization of quantum optomechanical systems. Conventionally, the cavity is strongly driven, and the overall system is well-described by a Gaussian preserving Hamiltonian. Here, we consider an undriven optomechanical system via non-Gaussian radiation-pressure interaction. We show that the optical probe gets a nonlinear phase, resulting from the non-Gaussian interaction, and undergoes an incoherent phase diffusion process. We propose using a nonlinear Kerr medium before a homodyne detector that enhances the precision to nearly saturate the ultimate quantum bound given by the quantum Fisher information [1]. The above sensing procedure falls into local sensing, namely when the quantum sensor operates efficiently only when the unknown parameters vary within a very narrow region. In the second part of this talk, we present a systematic method for optimizing the sensor to operate with its best precision over any arbitrarily large interval, namely, global sensing. By exploiting quantum many-body probes, our protocol harnesses the criticality for significantly enhancing the precision of multi-parameter estimation, independent of the sensing intervals [2].

          [1] V. Montenegro, et.al, "Mechanical oscillator thermometry in the nonlinear optomechanical regime". Phys. Rev. Research 2, 043338 (2020).

          [2] V. Montenegro, et.al, "Global sensing and its impact for quantum many-body probes with criticality," Phys. Rev. Lett. 126, 200501 (2021).

           

          報告人簡介: Dr. Victor Montenegro, a postdoctoral researcher working at UESTC. Currently, He is working on quantum metrology with quantum optomechanics flavor and many-body physics.

           

          歡迎各位老師和同學們光臨!